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ABSTRACT

This study assesses the level-2 precipitation estimates from 10 radiometers relative to Global Precipitation

Measurement (GPM) Ku-band precipitation radar (KuPR) in two parts. First, nine sensors—four imagers

[AdvancedMicrowave Scanning Radiometer 2 (AMSR2) and three Special SensorMicrowave Imager/Sounders

(SSMISs)] and five sounders [Advanced Technology Microwave Sounder (ATMS) and four Microwave

Humidity Sounders (MHSs)]—are evaluated over the 658S–658N region. Over ocean, imagers outperform

sounders, primarily due to the usage of low-frequency channels. Furthermore, AMSR2 is clearly superior to

SSMISs, likely due to the finer footprint size. Over land all sensors perform similarly except the noticeably

worse performance from ATMS and SSMIS-F17. Second, we include the Sondeur Atmospherique du Profil

d’Humidite Intertropicale par Radiometrie (SAPHIR) into the evaluation process, contrasting it against

other sensors in the SAPHIR latitudes (308S–308N). SAPHIR has a slightly worse detection capability than

other sounders over ocean but comparable detection performance toMHSs over land. The intensity estimates

from SAPHIR show a larger normalized root-mean-square-error over both land and ocean, likely because

only 183.3-GHz channels are available. Currently, imagers are preferred to sounders when level-2 estimates

are incorporated into level-3 products. Our results suggest a sensor-specific priority order. Over ocean, this

study indicates a priority order of AMSR2, SSMISs,MHSs andATMS, and SAPHIR.Over land, SSMIS-F17,

ATMS and SAPHIR should be given a lower priority than the other sensors.

1. Introduction

Satellite precipitation estimates have been widely

used in many areas ranging from real-time, high-impact

weather detection and short-term weather prediction to

long-term climate monitoring. Accurate precipitation

estimation is of critical importance for these applica-

tions. Currently, there are several well-documented and

operational precipitation datasets, including NASA’s

Integrated Multisatellite Retrievals for GPM (IMERG)

(Huffman et al. 2015), Climate Prediction Center’s morph-

ing technique (CMORPH) (Xie et al. 2017), JAXA’sGlobal

Satellite Mapping of Precipitation (GSMaP) (Kubota et al.

2007), and Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks–

Cloud Classification System (PERSIANN-CCS) (Hsu

et al. 1997; Hong et al. 2004). These gridded precipita-

tion datasets are often referred to as ‘‘level-3’’ products

in the satellite precipitation community.

A key step to improve the accuracy of the satellite

precipitation estimates is to validate them relative to

other references. Indeed, these level-3 products have

been extensively validated against gauge and ground

radar observations over different land regions at hourly,

daily, and monthly time scales. Maggioni et al. (2016)

surveyed the validation work from 1998 to 2015 for these

gridded satellite precipitation products. These valida-

tion studies consistently showed that level-3 satel-

lite rainfall products are generally more accurate over

dense vegetation regions and in the warm season.Corresponding author: Yalei You, yyou@umd.edu
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Similarly, Khan et al. (2018) showed that IMERG has the

best performance over the southeast United States com-

pared with other regions in the United States, relative to

ground and spaceborne radar observations. Validation

work over ocean for these level-3 products is limited to rain

gauge observations over atolls and from buoys. Prakash

and Gairola (2014) showed that the Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA) has systematic overestimation tenden-

cies relative to 22 buoy rain gauge observations in the

tropical Indian Ocean. Validation work continues in the

Global Precipitation Measurement (GPM) era since 2014.

Recent studies show that IMERG is better than

TMPA (Liu 2016; Liu et al. 2018; Wu and Wang 2019;

Gebregiorgis et al. 2018), partially due to the level-2

passive microwave retrieval algorithm improvement.

These surface- and geographical-dependent per-

formances are inherited from the level-2 (swath)

rainfall retrieval results of passive microwave radi-

ometers, which serves the basis for generating the

widely used level-3 (gridded) precipitation datasets

(except PERSIANN estimates deriving from IR only).

These passive microwave radiometers include the Special

Sensor Microwave Imager (SSMI) on board the Defense

Meteorological Satellite Program (DMSP) F11–F15 sat-

ellites; the Special Sensor Microwave Imager/Sounder

(SSMIS) on board DMSP F16–F19 satellites; the

TropicalRainfallMeasuringMission’s (TRMM)Microwave

Imager (TMI); the Global Precipitation Measurement

(GPM)Microwave Imager (GMI) onboard theGPMCore

Observatory satellite; the Advanced Microwave Sounding

Unit-B (AMSU-B) on board NOAA-15–NOAA-17 satel-

lites; the Advanced Technology Microwave Sounder

(ATMS) on board Suomi National Polar-Orbiting

Partnership (Suomi-NPP) and NOAA-20 satellites;

the Microwave Humidity Sounder (MHS) on board

NOAA-18,NOAA-19,MetOp-A,MetOp-B, andMetOp-C

satellites; the AdvancedMicrowave Scanning Radiometer-

Earth Observing System (AMSR-E) on board the Aqua

satellite; and its follow-on satellite (AMSR2) on board the

GCOM-W1 satellite. In addition, several future satellite

missions with radiometers on board suitable for pre-

cipitation measurement have already been planned. For

example, several Joint Polar Satellite System (JPSS)

satellites with ATMS on board and FengYun satellites

with Microwave Radiation Imager (MWRI) and the

Microwave Humidity Sounder (MWHS) on board have

already been planned to launch in the near future

(Goldberg 2018; Gu and Tong 2015).

Efforts have been made to directly evaluate the level-

2 rainfall retrieval results for several aforementioned

sensors. For example, Conner and Petty (1998) com-

pared the rainfall retrieval results from five different

algorithms for SSMI on board the DMSP F11 satellite,

relative to hourly gauge and gauge-corrected radar rain

rates over the continental United States (CONUS). They

found that all five retrieval algorithmsperformsimilarlywith

higher retrieval skills for heavy rainfall. McCollum et al.

(2002) validated the rainfall retrieval results from SSMI on

board F13, F14, and F15 relative to the gauge-corrected

hourly radar data over the eastern CONUS and concluded

that SSMI overestimates (underestimates) rainfall intensity

in the summer (winter) months. Kummerow et al. (2001)

downgraded the instantaneous TMI retrieved rain rates into

monthly time scales and accumulated in 2.58 grid boxes to

compare with the gauge-based precipitation product

from Global Precipitation Climatology Centre (GPCC)

and showed that they agree very well with each other.

However, these early level-2 validation studies have

a time-scale mismatch problem. In other words, the

satellite-derived rain rate is an instantaneous snapshot

product which does not match well with the hourly or even

monthly reference products. With the availability of

ground radar rainfall estimates at several minute temporal

resolution overCONUS (Kirstetter et al. 2014; Zhang et al.

2016) and western Europe (Kidd et al. 2018), this time-

scale mismatch problem has been greatly alleviated. Tang

et al. (2014) assessed the rainfall retrieval results from 12

passive microwave radiometers over the eastern CONUS

using the 5-min ground radar observations as the reference.

They concluded that precipitation retrieval from micro-

wave imagers notably outperforms that from sounders. It is

worth mentioning that the retrieval algorithms for the

evaluated 12 passive microwave radiometers are from

different developers and use different retrieval techniques.

Some of the algorithms are even ad hoc in nature.

A recent study by Kidd et al. (2018) evaluated the

level-2 retrieval results from GPM constellation radi-

ometers, which are all generated by the Goddard pro-

filing algorithm (GPROF) (Kummerow et al. 2015). It is

found that GPROF retrievals tend to overestimate the

light rainfall and underestimate the heavy rainfall. The

GPROF level-2 retrieval results for GMI have also been

evaluated against three dense gauge networks at the

pixel resolution and instantaneous time scale by Tan

et al. (2018). They showed that GPROF still faces

challenges over coastal and semiarid regions. Snowfall

validation for GMI has been conducted over a radar sta-

tion in Finland for several snowfall events (von Lerber

et al. 2018). It was shown that the GPROF retrieval per-

formance shows a clear dependence on storm-top height,

with much better performance for tall storm systems.

As reviewed above, validation for level-2 retrieval at

the instantaneous temporal resolution is limited to sev-

eral land regions due to lack of high spatial and temporal

resolution reference data. Over ocean, the data availability
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issue is even more severe. In the TRMM era, the level-2

retrieval validation often used the single radar observations

at the Kwajalein Atoll (Kummerow et al. 2001; Kubota

et al. 2007; Wolff and Fisher 2008, 2009). Clearly, the ob-

servations from a single radar station cannot represent the

rainfall characteristics over ocean.

To mitigate the representativeness issue over both land

and ocean, Lin and Hou (2008) exploited the coincident

observations from theTRMMPrecipitationRadar (PR)and

eight passive microwave sensors. It is shown that over land

AMSU-B (sounder) and SSMI (imager) perform similarly

for instantaneous rain rates between 1.0 and 10.0mmh21,

and over ocean the imagers are noticeably better than the

sounders for rain rates greater than 5.0mmh21.

This study applies the same strategy of Lin and Hou

(2008) by taking the spaceborne KuPR as the reference

to evaluate the precipitation estimates from 10 sensors.

First, we evaluate the performance of the precipitation

estimates generated by the latest version of GPROF

(Kummerow et al. 2015) from nine sensors, including

four imagers (AMSR2, SSMIS on board F16, F17, and

F18) and five sounders (ATMS on board Suomi-NPP

and MHS on board NOAA-18, NOAA-19, MetOp-A,

andMetOp-B). This evaluation is over the GPM covered

region of 658S–658N. Second, we include precipitation

estimates from the Sondeur Atmospherique du Profil

d’Humidite Intertropicale par Radiometrie (SAPHIR)

on board Megha-Tropiques into the evaluation process,

which are generated by the Precipitation Retrieval and

Profiling Scheme (PRPS) (Kidd 2018). Since SAPHIR

only covers the area from 308S to 308N, precipitation

estimates from the other radiometers are limited to this

308S–308N latitudinal band for a fair comparison.

All sensors excluding SAPHIR evaluated in this study

are in sun-synchronous orbits, which cross the equator at

the same local times twice a day. Therefore, the com-

parisons may reflect systematically different precip-

itation regimes that have a diurnal variability. For

example, a sensor with a late afternoon equator-crossing

time may sample more thunderstorms than a sensor

with a noontime equator-crossing time. While this is a

common issue for the intersensor comparison, the goal

of this study is not to provide an absolute but only

operational-oriented evaluation of the retrieval’s per-

formance. Additionally, the possible adverse effect due

to diurnal cycle is mitigated by the satellites drifting over

time, which evens out the diurnal sampling of a sensor

on a particular platform. For example, MHS-NOAA18

drifted from about 0400/1600 inMarch 2014 to 0830/2030

in December 2018. This diurnal sampling bias is further

reduced by considering the same sensors on different

platform—which have different diurnal sampling times—in

our conclusions.

Results from this work are expected to have im-

portant implications for the level-3 merged precipi-

tation product improvement. Currently, imagers are

preferable to sounders when the level-2 retrieval

results are incorporated into the level-3 merged

product—IMERG (Huffman et al. 2015). By knowing

the performance of each sensor, a better prioritization

scheme may be possible. Furthermore, assessments of

the recently released precipitation rates by PRPS from

SAPHIR are limited, in part because its 308N range

constrains the use of CONUS-based ground radars for

evaluation. The results can provide insight into the

SAPHIR precipitation estimates relative to other radi-

ometers in the tropical region.

2. Data

a. KuPR precipitation rate

This study uses the latest version (V06) KuPR

precipitation rate as the ‘‘reference.’’ Specifically, we

obtain the variable ‘‘precipRateNearSurface’’ from

the 2A-DPR product for KuPR. It is worth men-

tioning that ‘‘precipRateESurface’’ is extrapolated

from the lowest nonclutter bin to the surface and is

slightly smaller than ‘‘precipRateNearSurface’’ by

about 2%. KuPR is a cross-track scanning radar on

board the GPM Core Observatory with a nadir res-

olution of about 5 km. With a frequency of 13.6GHz

that is similar to TRMM PR, it is well suited to ob-

serve moderate-to-heavy rain. It has a detection

threshold of 18 dBZ (;0.5mmh21) based on its ini-

tial design specifications, but postlaunch analysis

suggests that it can identify precipitation signals down

to 12 dBZ (;0.2mmh21) (Hamada and Takayabu

2016). Precipitation estimates that include the Ka-band

PR (KaPR) reflectivity from the 2A-DPR product

are not used in this study because 1) the KuPR swath

width (245 km) is about twice as wide as that from

KaPR, resulting in more coincident observations

between KuPR and each radiometer, and 2) no clear

sensitivity advantage is observed from KaPR com-

pared with KuPR (Toyoshima et al. 2015; Hamada

and Takayabu 2016; Skofronick-Jackson et al. 2019).

Although this study uses the KuPR precipitation rate

as the ‘‘reference,’’ it is certainly not perfect. For exam-

ple, KuPR misses most of the precipitation rates below

0.2mmh21 due to its detection limitation (Hamada and

Takayabu 2016; Skofronick-Jackson et al. 2019). Previous

studies also showed that KuPR underestimates high

rainfall rates in the convective storms, compared with the

ground radar observations (Schwaller and Morris 2011;

Biswas and Chandrasekar 2018; Warren et al. 2018).

However, it provides the precipitation estimate from 658S
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to 658N, which is particularly valuable over ocean where

observations from other instruments (e.g., radar and

gauge) are very sparse.

Another potential caveat in using KuPR as the refer-

ence is the overlap in data for calibration and validation.

Information from KuPR is used as a priori knowledge by

GPROF and PRPS, from which the retrieval attempts to

estimate the precipitation rate based on the observed

microwave brightness temperatures from the passive

sensors. In this process, the a priori knowledge, made of

coupled passive microwave brightness temperatures and

KuPR precipitation rates, is used by GPROF’s Bayesian

scheme to generate a weighted mean of all known KuPR

precipitation rates. To further constrain the solution,

GPROF stores this a priori information into so-called

databases, subsetted by surface type and environmental

conditions (e.g., TPW and 2-m temperature). While this

approach provides a robust precipitation rate retrieval,

and is applicable to any passive microwave instrument, its

validation against KuPR may easily result in an inflated

performance. The same applies to the PRPS. For example,

biases in KuPR may propagate into the GPROF/PRPS

database, thereby hiding any systematic error that may

be present in the estimates. However, we expect such

situations to occur in a small fraction of the results

presented in this study for the following reason. GPROF

builds the retrieval database primarily using GMI and

KuPR to constrain the precipitation vertical profile.

Then, this database is used in the same fashion by the

other sensors (except SAPHIR) to estimate the surface

precipitation rate. The extent to which accurate pre-

cipitation information can be extracted from this data-

base is dependent on the information content from each

sensor and the retrieval algorithm’s ability to obtain the

precipitation information. We would like to emphasize

that GMI is not included in the comparison process. In

contrast, PRPS directly uses the KuPR precipitation

rate to populate the database for SAPHIR precipitation

rate estimates. In this sense, the statistics from SPAHIR

may represent its upper limit performance, and our re-

sults later show that SAPHIR performs slightly worse

than the other radiometers. Therefore, despite the use of

KuPR for constructing the databases by both GPROF

and PRPS, its use in evaluating the passive microwave

precipitation estimates can still provide valuable infor-

mation for the relative performance of each sensor.

b. Precipitation estimates from 10 radiometers
with GPROF

The first part of this study uses the surface precipita-

tion estimates from 10 sensors over the 658S–658N lat-

itudinal band, including AMSR2 on board GCOM

satellite; GMI on boardGPMCoreObservatory satellite;

SSMIS on board F16, F17, and F18 satellites; ATMS

on board Suomi-NPP satellite; and MHS on board

MetOp-A, MetOp-B, NOAA-18, and NOAA-19

satellites.

For clarity and convenience, these sensors are referred

to as AMSR2, GMI, ATMS, SSMIS-F16, SSMIS-F17,

SSMIS-F18, MHS-MetOpA, MHS-MetOpB, MHS-

NOAA18, and MHS-NOAA19. From now on, we use

these abbreviations to represent either the sensors them-

selves or the GPROF retrieved precipitation rates from

these sensors, depending on the context of discussion.

Precipitation rates for all 10 sensors are generated by

GPROF (Kummerow et al. 2015). There are 14 surface

types used in the GPROF retrieval process, including

ocean, sea ice, maximum vegetation, high vegetation,

moderate vegetation, low vegetation, minimum vegeta-

tion, maximum snow, moderate snow, low snow, mini-

mum snow, standing water, water–land boundary (coast),

and water–sea ice boundary. This study combines all five

vegetation categories into ‘‘vegetation’’ type, and all four

snowfall categories into ‘‘snow’’ type to increase the

sample size over each surface type. By doing so, there are

seven surface types in total. In addition, GPROFdoes not

use all available channels from each sensor for precipi-

tation retrieval, and the channels used are also different

over land and ocean for SSMIS (Table 1). This feature has

important implications for the retrieval result.

c. Precipitation estimates from SAPHIR by PRPS

In the second part of this work, we include the precipi-

tation estimates from the cross-track-scanning SAPHIR in

the evaluation process. Kidd (2018) recently developed

the Precipitation Retrieval and Profiling Scheme (PRPS)

to estimate precipitation rate from SAPHIR, which only

has six channels with different bandwidths around

183.3GHz and covers the tropical region of 308S–308N.

The precipitation estimates from SAPHIR have not

been evaluated as extensively as GPROF and under-

standing of its performance remains limited.

We obtain the SAPHIR precipitation rate from the

latest version of PRPS (V02–02). To conduct a fair com-

parison, precipitation estimates from the other sensors

(KuPR and other radiometers) are limited to 308S–308N
of SAPHIR covered region.

d. Spatial and temporal coverage

Data from all sensors are over the GPM covered re-

gion of;658S–658N except observations from SAPHIR

that are only over the ;308S–308N region. The input

brightness temperature data for all sensors are the in-

tercalibrated level 1C data (Berg et al. 2016), which are

produced and distributed by the NASA Precipitation

Processing System (PPS). In terms of the temporal
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coverage, data for all sensors are from March 2014

(launch of GPM satellite) to December 2018, except

those from MHS-NOAA18, and the three SSMIS sen-

sors. MHS-NOAA18 ceased to work in late October

2018, and only data from March 2014 to October 2018

are used. For SSMIS-F16, the 183.3GHz channels (183.3

61, 63, and 67) were not used in GPROF from

December 2013 to August 2015 due to excessive noise in

the brightness temperature observations. These data

were flagged as bad and set to missing in the input

level 1C dataset based on quality control done as part

of the dataset development and production.We would

like to mitigate the influence of the unavailability of

the 183.3-GHz channels on the retrieval results for

SSMIS-F16 by selecting a period from September

2015 to December 2018 when all three SSMIS sensors

had working 183.3-GHz channels. It also worth men-

tioning that the 150-GHz channel from SSMIS-F18

stopped functioning in February 2012. No obvious

impact is noticed due to the loss of this channel for

SSMIS-F18 in the later analysis.

e. Collocation scheme

The precipitation rate from KuPR has a spatial reso-

lution of ;5 km. Retrieved surface precipitation rates

for SSMIS, AMSR2, and GMI are put at their;19GHz

channel resolutions, which are approximately 59, 22, and

15 km, respectively. For SAPHIR, MHS, and ATMS,

the nominal resolution for the retrieved surface pre-

cipitation rate is ;10, ;16, and ;16km at nadir, re-

spectively. It is worth mentioning that GPROF does not

produce retrieval results for the 9 and 11 pixels over the

right and left edges of each scan line for ATMS. For

MHS, no retrieval is performed for five pixels at both

ends of the scan line. By omitting these pixels, the neg-

ative impact of the large footprint size at the edge of the

sounder scan line is alleviated.

To mitigate the apparent resolution difference be-

tween KuPR and these radiometers, we take 15km as

the nominal resolution, and average 3 3 3 KuPR pixels

to match this resolution. Specifically, we take the arith-

metic mean of the precipitation rates from KuPR every

three pixels in both the cross and along scan line direc-

tions. For retrieval results from the radiometers, we use

their native retrieval resolutions. Another scheme to

mitigate the resolution discrepancy is to calculate the

average 33 3 KuPR value based upon each radiometer

footprint view, instead of averaging the nine KuPR

pixels first. The reason why we average 3 3 3 KuPR

pixels first is to reduce the KuPR sample size. By doing

so, it is more computationally efficient for the colloca-

tion between KuPR and each radiometer (keeping in

mind that there are 11 radiometers in this study).

For retrieval results from the radiometers, their

native retrieval resolutions are used. As mentioned

previously, the retrieval resolutions from all sensors

are close to 15 km nominal resolution, except that

from SSMIS (59 km). We need ;16 already down-

graded KuPR pixels (15 km) to roughly match this

SSMIS retrieval resolution. Analyses indicate that the

statistical metrics shown later can vary, depending on

the KuPR subpixel variability in each SSMIS foot-

print, as demonstrated by previous studies (Varma

et al. 2004; Kirstetter et al. 2015). This study decides

to use the original SSMIS retrieval resolution because

1) it is almost impossible to know the subpixel variability

when incorporating the SSMIS retrieval result to the

level-3 merged product. In fact, IMERG does not ac-

count for the retrieval resolution and maps level 2 pixels

onto the 0.18 grid via nearest neighbor interpolation and

2) the collocated sample size between KuPR and SSMIS

is too small for the robust statistical analysis. For ex-

ample, based on the current collocation scheme there

are 357 893 collocations between KuPR and SSMIS-F16

over ocean. This number reduces to 38 963 when only

the SSMI pixel with 16 KuPR pixels in its field of view

are kept.

f. Coincident observations from KuPR and other
sensors

The purpose of this study is to use the KuPR

observations as the reference. To this end, we

must clearly define when the observations from

KuPR and other sensors are considered ‘‘coincident’’

observations.

For GMI, obtaining the coincident observations is

rather simple since both KuPR and GMI are on the

GPM Core Observatory satellite. Observations are

made at nearly the same time from both instruments.

For each downscaled KuPR pixel (;15 km), the near-

est GMI pixel is attached. By doing so, we have KuPR–

GMI coincident observations.

We define the coincident observations between

KuPR and each of the other nine sensors when the

observations from both instruments (e.g., KuPR and

AMSR2) are less than 5min apart and less than 5 km

away. These two threshold values (5min and 5 km)

are selected by considering the trade-off between the

sample size and the accuracy of coincident observa-

tions. A similar procedure has also been utilized

in satellite intercalibration (Yang et al. 2011) and

brightness temperature temporal variation compu-

tation (You et al. 2017a, 2018). We have also tested

other threshold values (e.g., 10min, 15min, 2 km, and

10 km) and found that the conclusions (e.g., the per-

formance rank for all sensors) of this study are robust

710 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 03:39 PM UTC



under different parameters of coincidence, even though

the absolute numbers change.

After obtaining the coincident observations, we

would like to analyze the precipitation retrieval per-

formance from all passive microwave sensors against

KuPR, except GMI. We intentionally do not compare

the precipitation estimates fromGMI with those from

other radiometers. Such a comparison favors the

GMI performance because they are on the same sat-

ellite and make observations at nearly the same time.

Instead, this study uses the performance of pre-

cipitation estimates from GMI as a sample size

FIG. 1. Coincident observation number between KuPR and each sensor, including AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18,

ATMS, MHS-MetOpA, MHS-MetOpB, MHS-NOAA18, MHS-NOAA19, and SAPHIR in 2.58 grid boxes. The number is scaled by 100

in each plot. All data are fromMarch 2014 to December 2018 except forMHS-NOAA18 and three SSMISs. ForMHS-NOAA18, the data

are from March 2014 to October 2018. For three SSMISs, the data are from September 2015 to December 2018.
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indicator. More detailed explanations are discussed

in section 4.

3. Methodology

To assess the precipitation detection performance of

the passive microwave sensors, we compute the four

numbers in the 2 3 2 contingency table (i.e., hit, miss,

false alarm, and correct negative). In the following dis-

cussions, we take the AMSR2 precipitation estimates as

an example, and the definitions are equally applied to

the other passive microwave sensors.

Definitions for these four numbers are based on Wilks

(2011). A hit is defined as both KuPR and AMSR2 de-

tecting precipitation. A false alarm is when AMSR2 de-

tects precipitation while KuPRdetects no precipitation. A

miss is whenKuPRdetects precipitation butAMSR2does

not. A correct negative is when both KuPR and AMSR2

detect no precipitation. This study uses 0.2mmh21 as the

precipitation/no-precipitation threshold value. Choosing

other values (e.g., 0.1 or 0.5mmh21) does not change our

conclusions, though the numerical values change.

From these four numbers, we compute commonly used

accuracy metrics of probability of detection (POD), false

alarm rate (FAR), and Heidke skill score (HSS). The

POD value quantifies the fraction of precipitating KuPR

pixels that AMSR2 correctly identifies as precipitating; it

varies from 0 to 1 with a larger POD indicating better

detection performance. The FAR value quantifies the

fraction of nonprecipitating KuPR pixels that AMSR2

incorrectly identifies as precipitating; it varies from 0 to 1

with a smaller FAR indicating better detection perfor-

mance. FAR should not be confused with False Alarm

Ratio, defined as the fraction of precipitating AMSR2

pixels that are false alarms (Wilks 2011). A large POD

value is often associated with a large FAR value, which

makes it difficult to assess detection performance using

POD or FAR. This study uses the HSS (varying from21

to11) value to judge the overall detection performance.

HSS is a generalized skill score that quantifies how well

FIG. 2. (a) Correlation between KuPR precipitation rates and GMI retrieved precipitation rates over seven surface types. This cor-

relation is based on the three-way coincident observations fromKuPR, GMI, and each sensor. The line color and its corresponding sensor

are shown in (b). (b) As in (a), but for bias. (c) Quantile–quantile (Q–Q) plot between the KuPR precipitation rates and theATMS-subset

KuPR precipitation rates over ocean. (d) As in (c), but over snow-covered regions. This study uses the correlation, bias, and Q–Q plot as

sampling indicators, and only focuses over ‘‘ocean’’ and ‘‘vegetation.’’ See corresponding context for detailed discussions.
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AMSR2 detects precipitation compared to random

chance. An HSS value greater than zero indicates a

performance better than random chance.

In the hit category (i.e., when bothKuPR andAMSR2

detect precipitation), we also compute the correlation

coefficient between KuPR and AMSR2.

To further evaluate the precipitation intensity, we

compute the normalized bias (nBIAS) and normalized

root-mean-square error (nRMSE) in different KuPR

precipitation intensity bins (Lin and Hou 2008; Tang

et al. 2014). Without binning the precipitation intensity,

these twometrics can be easily weighed toward the most

frequently light-precipitation pixels when computing

these statistical measures (Conner and Petty 1998; Lin

andHou 2008). In eachKuPR precipitation intensity bin

(e.g., 0.2–0.5mmh21), these two metrics are computed:
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1

n
�
n

i51

(y
i
2 x

i
)

x
, (1)

nRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(y
i
2 x

i
)2

s

x
,

where xi and yi are the KuPR precipitation rate and

AMSR2 precipitation rate, respectively. The x and n

represents the mean KuPR precipitation rate and sam-

ple size in that particular bin. Both the zero and nonzero

precipitation rates from the concurrent AMSR2 pre-

cipitation rates are included.

4. Results

This section begins by explaining why we use GMI

precipitation estimate’s performance as the sample size

indicator over different surface types. Then the results

are presented in two separate subsections. The first

subsection focuses on the performance from nine sen-

sors (AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18,

ATMS, MHS-MetOpA, MHS-MetOpB, MHS-NOAA18,

MHS-NOAA19) over the 658S–658N region. In the second

subsection, we include the SAPHIR precipitation estimates

in the evaluation process and limit other sensors to the

SAPHIR latitudes (308S–308N).

a. GMI performance as a sample size indicator

Figures 1a–j show the coincident observations between

KuPR and each sensor of AMSR2, SSMIS-F16, SSMIS-

F17, SSMIS-F18,ATMS,MHS-MetOpA,MHS-MetOpB,

MHS-NOAA18, and MHS-NOAA19. It is clear that

the sample size differs greatly among these sensors, with

the largest sample size fromAMSR2 of 40980427, and the

smallest sample size from ATMS of 6441257.

The large sample size difference among the different

sensors likely leads to an unfair comparison. For ex-

ample, AMSR2 has many more samples over snow-

covered areas and over sea ice than the other sensors.

FIG. 3. (a)–(c) Probability of detection (POD), false alarm rate (FAR), and Heidke skill score (HSS) over ocean for AMSR2, SSMIS-

F16, SSMIS-F17, SSMIS-F18, ATMS, MHS-MetOpA, MHS-MetOpB, MHS-NOAA18, and MHS-NOAA19. (d)–(f) As in (a)–(c),

but over vegetation.
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Precipitation retrieval over these surface types remains

very challenging and is known to have larger retrieval un-

certainties (Kummerow et al. 2015; You et al. 2015, 2016,

2017a). To ensure that the results for each sensor are not

affected by its sampling,weuse theGMIperformance as an

indicator for sampling in the following way. Each KuPR

observation has a concurrent GMI observation. Therefore,

we compare GMI to KuPR for each coincident pair be-

tweenKuPRand the passivemicrowave sensor; effectively,

we are selecting subsets of the GMI–KuPR comparison

based on the sampling of the various coincidences. This

reveals howdifferent samplingmay affect the performance.

For each coincident observation pair between KuPR

and each passive microwave sensor (except GMI), there

is also a concurrent GMI observation. We compare these

subsets of GMI retrieved precipitation rate (concurrent

with any other radiometers) to KuPR over different

surface types. The essential idea is that if the sample size

of each GMI subset is large enough, the performance

from each subset should be similar.

The correlation between the GMI retrieved precipi-

tation rates and KuPR precipitation rates (concurrent

with any other radiometers) is shown in Fig. 2a over

these seven surface types. Over ocean, these nine sub-

sets of GMI (indicated by the sensor name in Fig. 2b)

perform very similarly, with correlation ;0.75. This

means that the differences in sampling between the

various sensors have a negligible effect. A similar pat-

tern is observed over vegetation and coast, with all

correlations clustered closely around ;0.60 and ;0.55,

respectively. On the other hand, the correlation varies

greatly over the other four surface types (sea ice, snow,

standing water, and water–ice boundary), indicating a

possible effect of sampling on the results (keeping in

mind that these are all GMI–KuPR comparisons). A

similar feature is observed from the bias analysis

FIG. 4. Scatterplots between coincident KuPR precipitation rates and precipitation rates from nine sensors over ocean. These nine

sensors are (a)AMSR2, (b) SSMIS-F16, (c) SSMIS-F17, (d) SSMIS-F18, (e) ATMS, (f)MHS-MetOpA, (g)MHS-MetOpB, (h)MHS-NOAA18,

and (i) MHS-NOAA19.
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(Fig. 2b). That is, the biases from these nine subsets of

GMI are closer to each other over ocean, vegetation,

and coast, compared with other four surface types.

To further investigate the sample size issue, the quantile–

quantile (Q–Q) plot between all KuPR precipitation rates

and KuPR precipitation rates in each subset (i.e., KuPR

meets each sensor) is analyzed. A similar approach is em-

ployed by Kirstetter et al. (2012) to check the sample rep-

resentativeness between TRMM PR precipitation rates

and ground radar observations. Figure 2c shows the Q–Q

plot between all KuPR precipitation rates and KuPR

(ATMS-subset) precipitation rates over ocean. It is im-

mediately clear that the quantiles from these two datasets

are almost identical to each other, indicated by their close

matches on the 1 by 1 line (red curve in Fig. 2c). The

quantiles from other KuPR subsets (not shown) also show

close match with those based on all KuPR precipitations

rate. The almost identical quantiles from all KuPR pre-

cipitation rates and subsets KuPR precipitation rates indi-

cate that the subset samples are representative to the

overall KuPR distribution over ocean. TheQ–Q plots over

vegetation and coast are similar to those over ocean.

In contrast, clear discrepancies are noticed between

quantiles from all KuPR precipitation rates and those from

ATMS-subset KuPR precipitation rates (Fig. 2d) for in-

tensities greater than 4mmh21 over snow-covered regions.

It implies that the ATMS-subset KuPR precipitation rates

are not representative enough relative to the overall KuPR

precipitation features. Similar discrepancies from other

sensor subsets and over other three surface types (sea ice,

standing water, and water–ice boundary) are observed

(not shown).

Although subsets of GMI precipitation retrieval re-

sults over coastal regions show similar performance

(Figs. 2a,b), this study does not analyze the retrieval

results over coastal regions. The reason is because pixels

from SSMIS and pixels at the scan edges of the sounders

(ATMS and MHSs) have a much larger footprint size

compared with AMSR2. The precipitation retrieval per-

formance over coastal regions is highly influenced by

the land/ocean percentages in each pixel rather than

any other physical reason (e.g., channel availability).

Therefore, our analyses only focus over vegetation

and ocean surface types.

b. Precipitation estimate performance over
658S–658N

1) DETECTION PERFORMANCE

Figure 3 shows the detection statistics over ocean and

vegetation for the GPROF estimates from nine sensors.

Over ocean, all five sounders (MHSs and ATMS) have

similar POD values of;53% (Fig. 3a), and FAR values

of;8% (Fig. 3b). The overall detection performance is

also similar with HSS values of ;0.33 (Fig. 3c) for all

five sounders. The precipitation detection performance

from imagers (SSMIS and AMSR2) is markedly im-

proved. Specifically, the three SSMISs perform simi-

larly with POD, FAR and HSS of ;65%, ;6%, and

;0.46, respectively. The detection performance from

AMSR2 is marginally better than SSMISs, with a HSS

of 0.49.

Different channels used for detection over ocean

(Table 1) largely account for the apparent better de-

tection performance from imagers than from sounders.

For sounders, the low-frequency channels below 89GHz

are either not available fromMHSor not used fromATMS.

Therefore, there is almost no emission signature from the

liquid water drops, leading to inferior detection perfor-

mance from sounders. In contrast, the emission signature is

FIG. 5. (a) Correlation between coincident observations fromKuPR and from each sensor over ocean. (b) As in (a),

but over vegetation.
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muchbetter capturedby the 19-GHzchannel fromAMSR2

and SSMIS, resulting in better detection performance.

A very different picture emerges over vegetation in

terms of the precipitation detection performance be-

tween sounders and imagers. The most striking differ-

ence is that there is no clearly superior performance

between imagers and sounders over vegetation. The

HSS values are all close to 0.60 (Fig. 3f) except notably

smaller values of 0.54 from SSMIS-F17 and 0.56 from

ATMS. SSMIS-F17 also has the largest FAR value

(Fig. 3e). The equator crossing times from SSMIS-F17

and SSMIS-F18 are very similar from 2015 to 2018. In

particular, the equator crossing time in 2017 from these

two satellites is less than 20min apart. Therefore, the

precipitation diurnal cycle may not be responsible for

the poorer performance of SSMIS-F17. Work is under-

way to track down the exact reason why SSMIS-F17

has an inferior performance relative to the other two

SSMISs on board F16 and F18. Our preliminary

analysis indicates that the unavailability of the verti-

cally polarized 37GHz channel on SSMIS-F17 since

April 2016 is a highly likely possibility. Another possible

reason is potential calibration errors in the high-frequency

channels (91, 150, and 183.3GHz), since all three SSMISs

perform similarly over ocean, where the primary signature

is the liquid water emission signal from low-frequency

channels (e.g., 19GHz). The Precipitation Measurement

Missions (PMM) intercalibration working group found

significant biases resulting from an emissive main reflector

on the SSMISs (Berg and Sapiano 2013). Corrections of up

to 5K or more were applied, but there may be some re-

sidual calibration errors that need to be reevaluated since

SSMIS-F17 shows such significant differences in pre-

cipitation detection from the other SSMISs. As for

ATMS, its lower HSS and POD values compared to

the MHS sensors (Figs. 3d,f) are possibly caused by

the doubled footprint size of the 89-GHz channel

(e.g., 32 versus 16 km at nadir).

FIG. 6. Histogram of precipitation intensity by occurrence for coincident observations from KuPR and nine sensors over ocean. These

nine sensors are (a) AMSR2, (b) SSMIS-F16, (c) SSMIS-F17, (d) SSMIS-F18, (e) ATMS, (f) MHS-MetOpA, (g) MHS-MetOpB,

(h) MHS-NOAA18, and (i) MHS-NOAA19.
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Interestingly, the HSS value over ocean (Fig. 3c) from

each sensor is clearly smaller than over land (Fig. 3f).

This lower performance is caused by the fact that

GPROF adds more precipitating pixels below the

KuPR detection limit over ocean to minimize the dis-

crepancy between observed and simulated brightness

temperature (Kummerow et al. 2011). Adding these

raining pixels compensates for the limitation of KuPR

in detecting drizzle, a limitation revealed by compari-

son to the more sensitive CloudSat. This procedure

inevitably increases the light rainfall events that are

beyond the KuPR detection limit. Consequently, these

pixels are judged as ‘‘false alarm’’ when KuPR is taken

as the reference, leading to larger FAR values over

ocean than over land (cf. Fig. 3b and Fig. 3e) and

smaller HSS values over ocean than over land (cf.

Fig. 3c and Fig. 3f). In short, the apparent poorer

performance of the sensors over ocean compared to

over vegetation is a limitation of using KuPR as the

‘‘reference.’’

To summarize, in terms of the detection performance,

imagers (AMSR2 and SSMIS) outperform sounders

(ATMS and MHS) over ocean indicated by larger HSS

values, but no clear superiority is observed among these

nine sensors over vegetation.

2) PRECIPITATION INTENSITY COMPARISON

OVER OCEAN

This section compares the precipitation intensity based

on coincident observations between KuPR and each

sensor. Only observations in the hit category (i.e., when

both KuPR and each sensor detect precipitation) are in-

cluded. The results are presented separately over ocean

and over vegetation.

Figure 4 shows the scatterplot between KuPR and

each sensor over ocean. Precipitation rates from

AMSR2 agree best with those from KuPR, indicated

by a higher density of data close to the one-to-one line

in Fig. 4a, and a larger correlation coefficient of 0.69

in Fig. 5a. The SSMIS sensors perform similarly in the

FIG. 7. As in Fig. 6, but by precipitation amount.
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scatterplots (Fig. 4b to Fig. 4d), with a correlation

coefficient of 0.57 (Fig. 5a). All five sounders show

similar scatterplots from Fig. 4e to Fig. 4i with a much

lower correlation coefficient of ;0.40 (Fig. 5a).

To demonstrate a clearer picture of the precipitation

intensity, Fig. 6 provides the probability density function

(PDF) for each sensor, showing the precipitation oc-

currence as a function of precipitation intensity for the

nine radiometers over ocean.

The occurrence number (y axis) is normalized by the

total number of observations from each sensor and thus

is shown as a percentage. The PDF from AMSR2

(Fig. 6a) is closest to that from KuPR, followed by those

from the three SSMISs (Figs. 6b–d). The PDFs from

ATMS (Fig. 6e) and fourMHS sensors (Fig. 6f to Fig. 6i)

deviate the most from that of KuPR.

Furthermore, PDFs from these five sounders have two

peaks around 1 and 4mmh21 . The peak around 1mmh21

is also apparent from Fig. 4e to Fig. 4i. The reason for this

bimodal distribution from the sounders is currently under

investigation. TheGPROF algorithm team speculates that

the first peak is related to an emission increase in the

89GHz channel that averages together all the light

precipitation in the Bayesian database, resulting in a

mean value around 1mmh21. The sounders then

sense the heavier rain where there is a strong enough

scattering signal. It may indicate that sounders lack

enough skill to retrieve the light precipitation in the

current GPROF framework but they have some

signals that they always turn into a similar precipi-

tation intensity (C. Kummerow 2019, personal

communication).

We further show the histogram by precipitation amount

in Fig. 7. These histograms corroborate the major conclu-

sions drawn so far. That is, precipitation rate retrieved from

AMSR2 is the closest to KuPR, followed by the three

SSMISs, and last the sounders. The double peaks from

ATMS and MHS are more apparent around 1 and

4mmh21. In addition, all sensors greatly underestimate

the heavier precipitation (.16mmh21), with the degree

FIG. 8. As in Fig. 4, but over vegetation.
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of underestimation fromAMSR2 being notably smaller.

Underestimation of heavy precipitation is a known ar-

tifact of Bayesian averaging by the GPROF retrieval

algorithm. In the retrieval process, the Bayesian method

averages multiple profiles in the database. It basically

means that one can never retrieve the most extreme

precipitation intensities in the database, which are av-

eraged with lower values.

The better performance of imagers is due to the uti-

lization of low-frequency channels (11–37GHz) from

AMSR2 and SSMIS (Table 1), and therefore they can

better exploit the emission signature from the liquid

water drops. It is also clear that AMSR2 outperforms

SSMISs, most likely due to the much finer footprint size

(e.g., 22 versus 59 km at ;19GHz) as well as the avail-

ability of the 10.7-GHz channel on AMSR2.

3) PRECIPITATION INTENSITY COMPARISON OVER

VEGETATION

The scatterplot between coincident observations from

KuPR and each sensor over vegetation is shown in

Fig. 8. The differences among these sensors over land

are not as large as that over ocean.

Themost obvious feature is thatAMSR2has an intensity

peak around 0.7mmh21 (Fig. 8a). This feature is more

apparent in the histogram plot of Fig. 9a. The likely reason

why AMSR2 produces less precipitation intensities lighter

than 1mmh21 is caused by the lack of channels with fre-

quencies higher than 89GHz (Table 1). In contrast, all

other eight sensors have channels with frequencies around

150 and 183.3GHz. Over land, the precipitation retrieval

algorithmprimarily depends on the ice-scattering signature,

and these higher-frequency channels (150 and 183GHz)

are more sensitive to this signature than 89GHz (Bennartz

andPetty 2001; Skofronick-Jackson and Johnson 2011;You

et al. 2017b). Therefore, AMSR2 has a lower ability to

retrieve light precipitation.

Comparing the three SSMIS sensors on boardF16,F17,

and F18, precipitation rates less than 2mmh21 from

SSMIS-F17 have a larger spread around the one-to-one

line (Figs. 8b–d). This leads to a smaller correlation of 0.44

between KuPR and SSMIS-F17, while the correlations

FIG. 9. As in Fig. 6, but over vegetation.
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from SSMIS-F16 and SSMIS-F18 are around 0.54

(Fig. 5b). As discussed earlier in section 4b(1), the exact

reason why SSMIS-F17 has an inferior performance

relative to the other two SSMISs on board F16 andF18 is

unknown, but work is ongoing to find an explanation.

All four MHS sensors perform very similarly, indi-

cated by the similar scatterplots from Fig. 8f to Fig. 8i

and the similar histogram distributions, either by oc-

currence (Fig. 9f to Fig. 9i) or amount (Fig. 10f to

Fig. 10i). The similar performance is further corrobo-

rated by the similar correlation coefficients between

KuPR and each MHS sensor, which are;0.55 (Fig. 5b).

From the scatterplots in Fig. 8 and the PDF by oc-

currence in Fig. 9, it seems that there is little difference

between ATMS and each MHS sensor. However, the

difference between ATMS and each MHS sensor is

clearly shown in PDF by amount (Fig. 10). Specifically,

ATMS has a larger percentage of light precipitation

intensity around 2mmh21 and a smaller percentage of

heavy precipitation intensity greater than 8mmh21

(cf. Fig. 10e and Figs. 10f–10i). This is most likely caused

by the coarser resolution of 89GHz from ATMS. As

mentioned previously, the footprint size of 89GHz from

ATMS is twice as large as that from MHS (e.g., 32 versus

16km at nadir). The worse performance from ATMS rel-

ative to each MHS sensor is further shown by a smaller

correlation of 0.45, while the correlation is ;0.55 for all

MHS sensors (Fig. 5b). According to the PMM inter-

calibration working group, significant calibration changes

will be implemented forATMS in the near future, though it

remains to be seen whether these changes will impact the

performance of ATMS precipitation estimates.

4) NORMALIZED BIAS AND NORMALIZED RMSE

The normalized bias in Fig. 11a immediately reveals the

superior performance of AMSR2 over ocean, which is

particularly evident for precipitation intensity greater than

;2mmh21. Compared with sounders, the better perfor-

mance from the three SSMISs is also apparent for precip-

itation intensities from ;0.5 to ;4mmh21. RMSE from

FIG. 10. As in Fig. 7, but over vegetation.
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AMSR2also shows better performance than all sounders in

the full rangeof precipitation intensity, as shown inFig. 11b.

Relative to sounders, SSMIS sensors show smaller RMSE

from ;1 to ;12mmh21. These results largely agree with

our previous conclusions. That is, AMSR2 performs the

best over ocean, followed by the three SSMISs, and the

sounders perform the poorest.

Over vegetation, the most apparent characteristic is

that ATMS has the largest negative bias from ;1 to

;12mmh21. This bias is likely caused by the larger

footprint size of 89GHz from ATMS compared to other

sensors. Except this bias, there is no clear superiority

based on normalized bias and normalized RMSE among

all these sensors.

c. SAPHIR precipitation retrieval performance

Until now, we focused on the assessment of the GPROF

retrieved precipitation rate for nine sensors in the GPM

microwave constellation over the 658S–658N region.

SAPHIR is also in the GPM constellation and pro-

vides observations two to five times per day over the 308S–
308N region. While precipitation estimates from SAPHIR

are included in IMERGV06, evaluation of its performance

remains limited. This section evaluates the SAPHIR re-

trieval results from Precipitation Retrieval and Profiling

Scheme (PRPS) developed by Kidd (2018). To ensure a

consistent evaluation, the results from all passive microwave

sensors and KuPR are limited to SAPHIR latitudes (308S–
308N, Fig. 1k).

1) SAPHIR DETECTION PERFORMANCE

Figure 12 shows the detection performance of

SAPHIR in contrast to the other GPM constellation

sensors. First, the HSS value for SAPHIR over ocean

is 0.44, which is only slightly smaller than the;0.50 from

other sounders (ATMS, and MHS) (Fig. 12c). The

slightly smaller HSS value from SAPHIR is primarily

caused by the notably smaller POD value (Fig. 12a).

Second, over vegetation, SAPHIR has a HSS value of

0.60, which is comparable to that from most other sen-

sors except for SSMIS-F17.

Incidentally, this reduction in latitude range also

revealed that HSS values from ATMS and MHS in-

crease markedly from ;0.34 over the 658S–658N region

(Fig. 3c) to ;0.50 over the 308S–308N region (Fig. 12c).

At the same time, POD values and FAR values from

FIG. 11. (a) Normalized biases as a function of the KuPR precipitation intensity over ocean. (b) As in (a), but for

normalized root-mean-square error. (c) As in (a), but over vegetation. (d) As in (b), but over vegetation. The line

color and its corresponding sensor are shown in (a).
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ATMS and MHS also improve when only data in 308S–
308N are used (cf. Fig. 3a and Fig. 12a; cf. Fig. 3b and

Fig. 12b). One reason why ATMS and MHS have a

much better detection performance over the tropical

region is due to the heavier precipitation systems in the

tropical region, compared with those in the midlatitudes.

Heavier precipitation systems have largerwater paths, which

makes it easier for passive microwave radiometers to detect.

In summary, our results show that SAPHIR has a

slightly worse detection performance over ocean and

comparable detection performance over vegetation com-

pared to the other sounders (MHS and ATMS) over the

308S–308N region, even though there are only six channels

on SAPHIR around 183.3GHz (Table 1).

2) SAPHIR PRECIPITATION INTENSITY

RETRIEVAL PERFORMANCE

In terms of the SAPHIR performance over ocean,

the correlation between KuPR and SAPHIR is 0.40,

comparable to;0.44 fromMHS andATMS over ocean

(Fig. 13a). The normalized bias is similar to those from

MHS andATMS (Fig. 14a). However, the most evident

difference from SAPHIR is the much larger normal-

ized RMSE from SAPHIR at precipitation intensities

FIG. 12. (a) POD, (b) FAR, and (c) HSS over ocean for AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18, ATMS, MHS-MetOpA, MHS-

MetOpB, MHS-NOAA18, MHS-NOAA19, and SAPHIR. (d)–(f) As in (a)–(c), but over vegetation. All data are from 308S–308N.

FIG. 13. (a) Correlation between coincident observations from KuPR and from each sensor over ocean. (b) As in

(a), but over vegetation. All data are in the 308S–308N latitudinal band region.
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less than 8mmh21, shown in Fig. 14b. The wider

spread in the scatterplot (Fig. 15d) further corrobo-

rates this large RMSE observation. Compared with

SSMIS (Fig. 15b) and MHS (Fig. 15c), this large ran-

dom error is probably explained by the absence of

lower frequencies on SAPHIR. Previous studies have

shown that 183.3-GHz channels are less sensitive to the

ice-scattering signature than the high-frequency window

channel of ;150GHz (Bennartz and Bauer 2003; You

et al. 2017b).

Over vegetation, the correlation coefficient from

SAPHIR is 0.45, notably smaller than those from

MHSs but larger than those from ATMS and SSMIS-

F17 (Fig. 13b). Similar to over ocean, the retrieved

precipitation rate from SAPHIR shows a larger

spread around the one-to-one line in Fig. 16d than

that from the other sensors. Consequently, the nor-

malized RMSE is also larger compared with other

sensors (Fig. 14d). Again, the lack of high-frequency

window channels (;150GHz) is most likely responsible

for the weak correlation and large RMSE.

5. Conclusions and discussions

This study compares the retrieved precipitation rate

from 10 sensors using multiple year coincident observa-

tions between each sensor and KuPR. We first assess the

precipitation estimates from nine sensors over 658S–658N,

including AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18,

ATMS,MHS-MetOpA,MHS-MetOpB,MHS-NOAA18,

and MHS-NOAA19. We intentionally do not include

GMI in this comparison process to avoid the unfair

comparison since GMI and KuPR are on the same sat-

ellite platform. Our analysis only focuses over ocean and

vegetation in order to have sufficient samples. Key results

are summarized as follows:

1) For detection over ocean, imagers (AMSR2 and

SSMISs) have much better performance than

FIG. 14. (a) Normalized biases as a function of theKuPRprecipitation intensity over ocean. (b)As in (a), but for normalized root-mean-

square error. (c) As in (a), but over vegetation. (d) As in (b), but over vegetation. All data are from the 308S–308N latitudinal band.

The line color and its corresponding sensor are shown in (c).
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sounders (ATMS and MHSs). The utilization of the

low-frequency channels from imagers primarily ac-

counts for the better detection from these four

sensors.

2) For precipitation intensity over ocean, AMSR2

correlates most strongly with KuPR, followed by

the SSMISs, and finally the sounders (ATMS and

MHSs). The better performance from AMSR2

relative to the SSMISs is likely caused by the finer

footprint size and the availability of 10.7GHz

channel. The better performance from imagers

than that from sounders is again due to the utili-

zation of low-frequency channels.

3) For both precipitation detection and intensity over

vegetation, there is no clear superior sensor among

these nine passivemicrowave radiometers. However,

both ATMS and SSMIS-F17 have notably worse

performance than the other seven sensors. The exact

reason why these two sensors performworse than the

other seven sensors is unknown, though it likely

stems from larger biases at high-frequency channels

(91–183.3GHz) and the unavailability of the 37GHz

(vertical polarization) channel on SSMIS-F17 and

the large footprint size of ATMS.

4) Comparing SAPHIR to the other radiometers within

308S–308N, SAPHIR shows a slightly worse detection

performance over ocean than the other sounders, while

its detection performance is similar to MHSs over land.

In terms of the precipitation intensity, SAPHIR shows a

larger normalized RMSE over both land and ocean,

which is particularly evident over ocean. Considering

that SAPHIR has only six channels, all around

183.3GHz, the poorer performance is consistent with

our expectations based on emission- and scattering-

based retrievals.

These results have important implications for gener-

ating the level-3 merged product. Currently, the official

GPM gridded product, IMERG, prioritizes imagers

(e.g., AMSR2 and SSMIS) over sounders (e.g., ATMS

and MHS) when there is more than one passive micro-

wave radiometer’s observations in a grid box within the

half-hour time period. Our results suggest that this is

generally valid over ocean. However, a more refined

FIG. 15. Scatterplots between coincident KuPR precipitation rates and precipitation rates from four sensors over

ocean in the 308S–308N region. These four sensors are (a) AMSR2, (b) SSMIS-F18, (c) MHS-MetOpA, and

(d) SAPHIR. Characteristics of scatterplots from the SSMISs on board F16 and F17; MHSs on board MetOp-B,

NOAA-18, and NOAA-19; and ATMS over 308S–308N are similar to those over 658S–658N in Fig. 4.
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hierarchy can be adopted. Specifically, we recommend

the following priority order over ocean: AMSR2, the

three SSMISs, ATMS and the fourMHSs, and SAPHIR.

Over vegetation, our results do not support the priority

order in IMERG. Instead, our results suggest the fol-

lowing two-level priority order: AMSR2, SSMIS-F16,

SSMIS-F18, and the four MHSs should be preferable to

those from ATMS, SSMIS-F17, and SAPHIR.

While this study does not include GMI, we hypothe-

size that GMI should perform the best by comparing

performance from all other sensors. This study shows

that two key factors (the channel availability and the

footprint size) affect the retrieval performance greatly.

For example, the better results fromAMSR2 (compared

withATMS/MHS) over ocean highlights the importance

of low-frequency channels. The better results from

AMSR2 (compared with SSMIS) over ocean highlights

the importance footprint size. Considering that GMI has

the finest footprint resolution, and has the full spectrum

of frequencies from 10 to 183GHz available, we there-

fore hypothesize that it should be ranked ahead of all the

others, though we exclude GMI in the comparison

process. In fact, Kidd et al. (2018) showed that GMI has

the best correlation and HSS values compared with

other radiometers in the GPM constellation, relative to the

ground radar precipitation estimates overWestern Europe

and CONUS. More generally, this study demonstrates a

framework to determine the order of priority of various

passivemicrowave sensors used in IMERGat anyperiod of

time, which can be extended back to the TRMMera (using

the TRMM PR instead of GPMKuPR) as well as into the

future to include the next-generation sensors.

As mentioned previously, the inferior performance

from SSMIS-F17, compared with the SSMISs on board

F16 and F18, is potentially due to large biases from the

high-frequency channels and the unavailability of the

vertically polarized 37-GHz channel with this sensor,

considering that the same retrieval algorithm is ap-

plied to all three SSMISs. This issue may pose a chal-

lenge when calibrating this sensor. Finally, the current

GPROF retrieval framework treats all three SSMISs

equally. This study indicates that it may be necessary to

treat SSMIS-F17 differently from the other two SSMISs,

for example, using a different channel weighting scheme

in the retrieval process.

The conclusions in this study are obtained using an

evaluation against a spaceborne precipitation radar.

Compared to conventional evaluation using ground

FIG. 16. As in Fig. 15, but over vegetation.
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measurements, the use of KuPR as a referencemay have

some shortcomings in terms of the independence of data

(section 2a). However, its near-global coverage confers

the advantage of an evaluation over different condi-

tions, particularly over oceans where reliable ground

reference is sparse. Together with ground validation of

KuPR itself (Skofronick-Jackson et al. 2017, 2018), the

framework used in this study can serve as a synergistic

evaluation of global precipitation, with potential im-

provements to widely used gridded products through a

refinement of the sensor priority order.

Finally, we would like to emphasize that the conclu-

sions drawn from the comparison in this study are rele-

vant to the GPROF algorithm and are not indicative of

the potential power of each of these sensors if different

retrieval algorithms were applied to them.
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